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Abstract— The solidification of a binary alloy is studied on a three-phase model (solid, liquid, mushy

zone). The balance equations of the model are formulated globally over the whole region occupied by the

alloy and are treated in a distributional sense. Convective phenomena in the melt and the influence of

gravitational field are taken into account. The significance of the model for studying solidification processes
under different gravity conditions is discussed.

1. INTRODUCTION

SOLIDIFICATION processes are driven by heat and mass
transport. The transport itself can be due to the con-
duction of heat and diffusion of solute and, in
addition, convection and radiation may be involved.
Hence, phenomenological models of processes of this
type should contain the balance equations for mass,
momentum and energy, the constitutive relations for
generalized fluxes, and the equations of state. In this
paper we shall restrict ourselves to the constitutive
relations which follow from the axiomatic structure
of non-equilibrium thermodynamics [1]. Using the
hypothesis of local thermodynamic equilibrium we
thus express certain equations of state from the equi-
librium phase diagram of the binary alloy under con-
sideration.

We distinguish three phases in the system under-
going solidification, namely a solid phase, a liquid
phase and an inter-phase (sometimes called mushy
zone or crystallization front), which is a mixture of
solid and liquid. There are two main phenom-
enological approaches to modelling such a system.
First, there is a generalization of the classical Stefan
problem. Here, the inter-phase is modelled as a dis-
continuity surface [2] and the model consists of the
balance equations in both solid and liquid, while the
inter-phase balances take the character of jump con-
ditions across the surface dividing the phases. This
approach is analysed in ref. [3]. Another approach
formulates the balances globally over the whole
region occupied by the alloy. As a consequence, the
balances must be treated in a distributional (weak)
sense instead of pointwise in each of the phases as
with the first approach. A useful example of a model

of this type has been presented by Alexiades et al. [4].
Our mathematical formulation is, in fact, a gener-
alization of ref. [4], taking the convective phenomena
and the influence of gravitational field into account.

2. A MODEL OF BINARY ALLOY
SOLIDIFICATION

2.1. Basic assumptions

We consider a binary alloy consisting of com-
ponents A and B and suppose that the alloy is capable
of forming solid solutions in all proportions (e.g. Cu—
Ni, Au-Pt). The system under consideration is situ-
ated in an exterior gravitational field and the mass
transfer is due to diffusion (in all the phases) and to
convection (in the liquid phase and inter-phase). Heat
is transferred by conduction and radiation (in the
whole system) and by convection (in the liquid phase
and inter-phase). We assume that the liquid phase and
the inter-phase are quasi-incompressible Newtonian
fluids and thus we can use the Boussinesq approxi-
mation and the Navier-Stokes law for the stress tensor
in these phases. Since we suppose that no convection
takes place in the solid phase the Navier-Stokes law
may be applied even there. Further we assume that
there are no chemical reactions and that the interactive
forces between the components of the alloy are neg-
ligible. Finally, we model the alloy as an isotropic
material.

The theoretical study of alloys usually employs the
model of a mixture [5, 6]. The binary alloy in a solid
phase (S), liquid phase (L) and an inter-phase (I) is
then, as a whole, described by the respective continua
E* k=S8, L, I, each of which may be viewed as a
superposition of one-component continua E¥,

1787



1788

F. VODAK er al.

specific heat under constant pressure
specific heat under constant volume
concentration
diffusivity of component B of the alloy
g specific Gibbs energy {chemical
potential)
acceleration of gravity
specific enthalpy
diffusion flux
thermal conductivity
¢ latent heat of crystallization
latent heat of melting
mobility
pressure
heat flux
temperature
stress tensor
specific internal energy
velocity
specific volume
w diffusion velocity.
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NOMENCLATURE

Greek symbols
o thermal expansion coeflicient
B Dufour coefficient
¥ solutal expansion coefficient
o Soret coefficient
o unit tensor
. coefficient of dynamical viscosity
‘/ fiquid fraction
p density
¢ radiation heat source.

Superscripts
k phase of material, k = L, L. S

1 inter-phase (mushy zone)
L liquid
S solid.
Subscripts
A,B components of the alloy
2 related to particular component,
x = A, B.

@ = A, B. Partial quantities X% will be related to the
particular components EX, x = A, B, whereas the total
quantities corresponding to the continuum E* will be
denoted by X*. We thus introduce the densities gf, p*,
where

ph= Y ph k=S L1 (1

¥=A.B
and define the concentrations C% as

pl\
Ci='t XCi=t @

«

For the velocities v*, v* we have

YOk =v, V=0 (3

ES

Further we introduce the diffusion velocities w; by

W= vE v 4
and the diffusion fluxes j;, for which
io=piwe, YR =0 (5)

We denote by V%, I* the specific volumes, having
V= (o', Y ClvL Y avi=1.(6)

Let & be the unit tensor and denote by Ti, T* the
stress tensors and by p%, p* the pressures. We then
have

T = —-5p“'+nT", T = ~6pf 4+, T,
ZDT‘; = DTk N

x

Spk=p pho= v,

where , T%, , T¢ are the dissipative parts of the respec-

tive stress tensors. The specific internal energies uf, &
and the specific enthalpies A%, #* are given by

=Y Chdb, W= CAR,

Wos a4 pfVE W = 4 pF S (8)

and in addition we put #* = A} —#\. The heat fluxes
4", q* (corresponding to the conductive transport) and
the radiation heat sources @5, ¢* satisfy

¢=)q, =)o ]
For the specific Gibbs energies g%, ¢* we have

g =32.Cud (10)
and put i* = gf —gh.

Supposing that the temperature field is the same
for EX. EY and E*, we denote the temperature by 7%,
the specific heats under constant pressure and con-
stant volume by ¢ and o}, respectively, the thermal
conductivities by &%, the diffusivities of the component
B by D, the Soret coefficients by &%, the Dufour
cocfficients by p%, the thermal and solutal expansion
coefficients by «° and 7%, respectively, and the
coefficients of dynamical viscosity by #%. Finally, we
introduce the mobilities as

e pA—Df( (_‘?‘ﬁk )«« i
= C'f\ .

Some of the quantities introduced are continuous
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across the inter-phase ; the others are piecewise con-
tinuous. So, for example, the jump of the enthalpy
equals the latent heat of phase transformation. Denot-
ing the latent heat of melting by L,, we thus have

Ly =h—k, Ly=—Lc¢ (11

where L is the latent heat of crystallization.

2.2. Balance equations

We start by formulating the basic conservation laws
for the continua in question, temporarily taking no
care about the phase change process. Referring to the
assumptions made in Section 2.1 we write the mass
balance in the form

divvs =0,
pk = p-k —ﬁkdk(Tk— Tk) _ﬁk,yk(clé_(':'/é) (12)

k =L, S, I, where the bar denotes a reference value
and the expansion coefficients are defined as

L L vy 1 (et
x _W 6T" p“,C‘{,_ pk 6T" pk’Cﬁ

(1 fav* 1 [
22 VT T CTey A

The incompressibility of E* does not imply the
incompressibility of E%, of course. Hence, the mass
balance equations for the individual components EX,
o = A, B, of the mixture are

(13)

k

dc
pkiti +diviF =0k =L,S,1) (14)

where

dxs  oxt
dr ot

+ (v - grad X%)

is the material derivative.

Using the ‘weak diffusion approximation’ by which
terms quadratic in w% and j¢ are supposed to be neg-
ligible, we obtain the balance of momentum in the
liquid phase as

L
pLE = —grad p* +div ;T +ptg  (15)
where g is the gravity and p" is given by (12). If we
suppose that the pressure gradient in (15) is due to
the weight of the fluid, equation (15) can be split into
the relations

grad pt = p'g,
L

d _
pr5 = div pT — phgla (1" — V)

+M(CE-CP). (16)

Applying the Navier—Stokes law, linearizing and tak-
ing (12) into account we finally obtain
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L avL : L L
pt——=div(n, grad v)
ot
—ptgl (T —T+y~(C5-Cp)]. (7)
This equation implies that the viscous forces are com-
pensated by the buoyancy forces in the stationary
state.

Assuming formally that the coefficient of dynamic
viscosity is a very large number in the solid phase,
75 — oo, we may also write (17) in the solid. Then, in
accord with the assumption that the inter-phase is a
fluid whose properties are determined by the cor-
responding properties of the solid and liquid phases
(cf. the next section), relation (17) also holds in the
inter-phase. Consequently, we formally write

6 k
pr N _ diy (% grad v*)
ot
— gl (T" =T +y5(CL - CH] (17)

k=L, S, I. The balances of momentum for the indi-
vidual components EX, a = A, B are not included in
our considerations. The reason is that these balances
would be combinations of the balance of momentum
for the mixture and a constitutive relation for the
diffusion flux which we introduce later in this section.

The balance of internal energy has the form (cf.
refs. [5,7])

a k., k
l:?tu +div (pru{.‘vﬁ+qk)

+Y pidivvi—Y (,T¢: grad vi)—¢* =0 (18)

k=L, I, in the liquid phase and inter-phase. Here,
(A : B) denotes the scalar product of the tensors A and
B. The last but one term on the left-hand side of (18)
represents viscous dissipation of energy and is usually
neglected in heat transfer equations. We thus put

Y (T::grad vi) = 0

in our model too. Since we assume v° = 0, v3 ~ 0 we
may also write the balance of internal energy for k = S
formally in the form (18).

Now, using (1)—~(8) and (12), we can modify (18) to
obtain

aF
ot S div (@ 1) + (V- grad )

— 2 (v grad piVip) —¢* =0 (k=L,I).
(19)
If the alloy is supposed to be diluted we have C% « 1,

say, and thus we may put pX V& ~ 1, pk V4 ~ 0 and
obtain

(v - grad p*) =Y (v% - grad pkVipF

= (0R)~'(i§ - grad p*)  (20)
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k = L, 1. Taking the first equation of (16) into account
and putting C4 =~ pi/5*, we finally arrive at the
energy balance in the form

K

du* . ! " "
- div(gE -t +H(CR) G g) = ¢

k
Ly 2n
k = L, 1. Owing to our assumptions on v°, v3, equation
(19) may also be formally written for £ =S and in
this case the equivalence of (21} and (19) follows from
the fact that j§ ~ 0 under our assumptions. Hence, we
use the energy balance (21) for k =1, §, T in what
follows.

The phenomenological laws of linear (irreversible)
thermodynamics vield the constitutive relations

ji = —p"D* grad Ch+ Mg +p"6 grad T*

k 3

' ' M
q' = —k*grad T+ grad C— %p}j’r# (22)

k=L, S, I, where we suppose that D® = 0, M* ~ 0,
5%~ 0 to provide consistency with our previous
assumption of j3 ~ 0. Further, we suppose that
FSMSIDS ~ 0.

Using (14), (17), (21) and (22). we thus finally have
the following relations in each of the phases
(k=1L,S,I):

pk S ;}l‘” —O{‘(Tk - Tl‘) "“fk(C’(f} - (ﬁi\-‘l)]
divvf =0
vk
p/\ (:3{ = div (11[; grad VA)
— gl (T = T+ (Ch— T
k

dC
pk AEE = div (kak grad CI;;)

—div{M*g)—div (p* 5" grad T")

o U < div [ ) grad T

+div{(n*p* D* — §*) grad C§]

f[\
A,

—(C{) " [(—p* D* grad €

+Mig+ptd grad T*) - gl +¢". (23)

In addition, the Gibbs relation must hold and equa-
tions of state must be specified.

2.3. The Gibbs relation and equation of state
Developing the conservation laws and constitutive
relations in the previous section we did not pay atten-
tion to the phase change process. The particular
phases in our model can only be distinguished by
introducing the equation of state, which would be
subject to the phase diagram and the Gibbs relation.

F. VopAk ¢t al.

Modelling the process at a macroscopic level we
employ the assumption of local thermodynamic equi-
librium, which in turn implies the validity of the equi-
librium phase diagram of the alloy locally. Consider
an elementary cell P which is small enough to possess
nearly uniform propertics. The entire cell P thus
belongs to one of the three continua, £% E° or £
For simplicity, we assume that the liquid and sohd
curves in the equilibrium phase diagram can be written
as Cy= AT, k= L,S, where f* arc continuous
functions. Further, we assume that the possible phases
for the cell P arc

Pekb e Cy < fH(T)
PeESesCy > f5(T)

PeE'« fYT) < Cy < [5(T) (24)

for definiteness.

The continuum E' has a special character since it is
not a pure phase. It may be viewed not only as a
superposition of EY, and E}, but also as that of £ and
ES (i.e. as a mixture of liquid and solid). We apply
the ‘lever rule” and introduce the liquid fraction £ by

£=1 for PeE"
f%{T) - Cn 1
AUEEGE.
=0 for Pek® (25)

in accordance with ref. [4]. Then, any specific quantity
i

X' defined in the inter-phase £' (namely V', p'. b’ 4,

¢'. u') can be written as

X' = 2X (1= 2X7 (26)
Equation (26) also holds in £* and £°.
In the liquid or solid the Gibbs relation reads
du= Tds—) A,dq, (27

where 4, are generalized forces, a; generalized coor-
dinates and s is the specific entropy. We will make use
of the well-known thermodynamic relations

Cu {04,
A+ =)
ca; Ty #a . C ViR

Since we have i = 1, 2 and
Ay =p, A= —L,

it follows that

Cu “&p
) (7
Pt ((3 If)?’.("; 1 )ﬂlﬁ;
Cu "o
_ e = 7.5 .
# + (aCB)I v (F T>L g

In fact, up to now we tacitly assumed the con-
centration Cy and temperature T to be the primary
independent thermodynamic variables describing the
state of the continuum in question. However. the

(28)
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internal energy was considered to be a function of the
entropy, volume and concentration in (27). To avoid
confusion we emphasize that the specific internal
energy will be treated as a function of 7, ¥ and Cy in
what follows and we thus write the equation of state
in the form

Ju ou
e () ara(),

Ou
() e @

where we have (0u/0T), ¢, = ¢,. Combining (28) and
(29), we obtain

op
du = ¢, dT— [p T(5T>Vc,,]dV
ou
[ﬂ T(BT)VCB]dCB' (30)

We now eliminate the derivative (6/6T),. ¢, from
(30). The chemical potentials g, can be written as

gz(p’ T’ CB) = .q:z(p(pan T)7 T» CB)

and thus

(%)~ (). (3).5)
oT (N T p.Cy op T.Cy or 00.Ca

where we have (89./0p)7.c, = V.. The definitions (1),
(2) and (6) imply that p,, Cg = const. (x arbitrary) if
and only if ¥, Cy = const. Hence, taking (10) into
account we have

ou du
(67‘),/,5” N (ﬁ)praJr(VB VA)(”)

Using the notation 5 = Ag— A, introduced in (8) and
applying the second Gibbs-Helmholtz equation

09.
h, =g,—T{ =
2 = Ga T( 3 T)M

we combine (30) and (31) to get

0
du=c¢,dT— [p T(ag_)wn]dV
+[n—T(VB VA)(aT) ]dCB. (32)

Further, equations (6) and (2) imply

(3D

1 This assumption does not contradict the assumption
grad p = pg of (16). The equation of state is based on the
local thermodynamic equilibrium, whereas the above
assumption regards the dynamics of the system.

1791
dV = (Vs—Va)dCy+) C,dV,.
Substituting into (32) we can write

op
du= ¢, dT—pd¥+ T<6T) Y C,dV,+1dCq

V.Cg a
(33)
where V, = V,(T,p, Ca), a = A, B, satisfy the gener-

alized Gibbs—Duhem equation

oV ov
cdv, = () ar+(Z) o 4
; <‘7T)p,c., <5P)T.C., P (34

The equation of state is established from the (7, Cy)
phase diagram, which implies the assumption of
dp = 0 locally.t On this assumption, equations (33)
and (34) yield

op oV
du=c,dT—pdV+ T(aT)VC (ﬁ),,_(~BdT+” dC,

where
op oV
T(ﬁ>y,q (ﬁ) e

Hence, the final form of the Gibbs relation for the
liquid or the solid is

duf = < dT—ptdV* +945dC, (k=L,S). (35

In the inter-phase, applying (26) to the energy u
and differentiating we have

du' = Adut +(1—2)d’ + (- —u®)di.  (36)

Now we substitute into (36) from (35), express the
specific properties ¢,, ¥ and # in accord with (26) and
take equations (8), (I11) and the assumption dp =0
into account. We thus arrive at

du' = dT—p'dV'+4'dCy+ Lyydd  (37)

where Ly = (- —u5)+p(V-—VS) = h~—h5.
Since d4 =0 in the liquid or solid (cf. equation
(25)), the Gibbs relation

df = &dT—p AV +1* dCy+ Ly d2* (38)

is valid in each of the phases, kK = L, S, I. Recalling
that the process is isobaric locally we note that
V =WV(T,Cy), A = AT, Cy) so that (38) can be given
in the form

3 & al{k ko Kk yrk
dvf = cp+LM-ﬁ—paV dr

(77 —I—LM —-p"y V‘)dCB 39

where C: = L';‘,(T, CB)7 rlk = nk(T! CB)! LM = LM(T')q
of = o*(T) and y* = y*(Cy). The equation of state in
the form u = u(T, Cy) can now be obtained by the
same integration procedure as in ref. [4].
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2.4. The model of solidification

Combining (23) and (39), we obtain the following
equations that the unknown quantities p, v. Tand C,
should satisfy:

p=pll—a(T—T)—3(Cy—Cy)l
divv =0

-

¥ . = . =
p 5 = div 0y, grad v) = 5l T= ) +3(Cy = )]

dq
p _a}i = div (pD grad Cy) —div (Mg)

—div{pd grad T

84 dr
p(c,, + Ly a7 P V) Fri div [(k—~npd)grad T

CA
+{(ypD— Pygrad Cyl+ (lﬁ-LM ac. TP V)
Cy

x [div(pd grad T)+div{Mg)—div{pD grad Cy)]
i
+div [M('{— -;7)g]~ (Cr) " Y(—pDgrad Cy
pD

(40)

This system of equations is understood to hold in a
distributional sense in the entire domain occupied by
the alloy. We suppose that the material properties o,
W i, Dk, 6, B, M. Ly, and the heat sources or
sinks are determined experimentally. Furthermore, an
equilibrium phase diagram is supposed to be known,
giving the possibility to determine 2 = A(T, Cy). The
initial and boundary conditions for equations (40)
follow from the experimental situation.

+Mg+pograd T) g+ ¢.

3. DISCUSSION

The model of sohidification based on the system
of equations (40) is still rather complicated. In fact,
second-order effects are taken into account in this
model. For example, the influence of the forced
diffusion due to gravitational forces (represented by
the parameter M in our model) can be neglected in
many cases [8]. Putting M =~ 0 and grad M =~ 0in (40)
and neglecting the radiation term ¢, the diffusion and
heat equations become

dC .
p gf’ = div {pD grad Cy)—div(pd grad T}

ai ar . . .
P(C’p + L AT —pa V) dr = div [(k —#pd) grad T

0 0
+(npD—p) grad Ce]+ (11 + L (IC —pd V)
'Cy

x [div ( pd grad Ty—div (pD grad Cyp)]

—(CAY "N —pDegrad Cy+pdgrad T)- g. 4hH

F. VODAK et al.

If we simplify further and consider the case of
p=const. (ie. a=7y=0) and v=0, then the
diffusion equation will be the same as in (41), whereas
the heat equation becomes

eiNdT o .
pl e+ Ly o i div (k grad T fi grad Cy)

YLy (‘(’ [div(pé grad T) —div (pD grad Cy)]
g
—[gradn+(Ca) 'g]*(pd grad T—pD grad Cy).
(42)

In this case, the only difference between our simplified
model and the model of Alexiades er «f. {9, 10] is the
gravity term in the energy equation {42).

We feel, however, that this term itself cannot
explain the influence of gravity on solidification
phenomena. Roughly speaking, this influence would
be significant if we had |(Ca)" 'gl = lgrad 5} in the
simplified model. We think that this is not the casc in
most experimental situations. For example, the data
given in refs. [9, 10] regarding the solidification of
CuNi and HgTe-CdTe alloys indicate that |grad n{ is
two to four orders of magnitude greater than [(C,) g}
in terrestrial conditions.

Therefore, it is reasonable to assume that the intlu-
ence of the gravitational field on solidification pro-
cesses will be manifested through the influence of g
on the fluid flow and thus a model taking convection
in the melt into account is necessary to study sol-
idification under different gravity conditions. This
paper presents an attempt at constructing a relatively
simple model of this type.
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UN MODELE DE LA SOLIDIFICATION D’UN ALLIAGE BINAIRE AVEC
CONVECTION DANS LE BAIN

Résumé—La solidification d’un alliage binaire est étudiée sur un modéle a trois phases (solide, liquide,

boue). Les équations de bilan du modéle sont formulées globalement sur toute la région occupée par

Palliage et sont traitées dans un sens distributionnel. On prend en compte les phénomeénes convectifs, dans

le bain et I'influence du champ de gravité. On discute la signification du modéle pour étudier les mécanismes
de la solidification sous différentes conditions gravitaires,

EIN MODEL FUR DIE ERSTARRUNG EINER ZWEISTOFFLEGIERUNG MIT
KONVEKTION IN DER SCHMELZE

Zusammenfassung—Die Erstarrung einer Zweistofflegierung wird mit Hilfe eines Dreiphasenmodells (Fest-

stoff, Fliissigkeit, Verfestigungszone) untersucht. Die Bilanzgleichungen des Modells sind fiir das gesamte

von der Schmelze eingenommene Gebiet global formuliert und werden als verteilt angesehen. Konvektion

in der Schmelze sowie Einfliisse des Schwerefeldes werden beriicksichtigt. Die Bedeutung des Modells

fiir die Untersuchung von Verfestigungsvorgéngen bei unterschiedlichen Gravitationsbedingungen wird
diskutiert.

MOZEJb 3ATBEPJEBAHHS] BHHAPHOI'O PACILIABA ITPH HAJIMYHUY KOHBEKIIMUA

Amsoramms—Ha repexdasnoit Molenn (Trepaoe TENO, KHAKOCTH, HOPHUCTAs 30HA) HCCHEAYETCH 3aTBED-

nepanne OmHapHoro pacmiasa. [aerca raobambHas GOPMyREPOBKa MOZENBHEIX ypaBHeHHH Ganamca

Ans seeit 06aacTy, 3aHATOH PAcIIABOM, M TPOBOAHTCA AHAJM3 PACHPECTCHHS PACILUIAB2. YUHTHBAIOTCH

KOHBCKTHBHEIC NBJICHAS B PACILIaBe ¥ BIHSHAE TPABHTAMOHHOrO mosd. O6CyXaaeTcs POsb MONEIH B
HIYYCHHH NPONECCOB 3aTBEPACBAHMS TIPH PAIIHIHBIX YCIOBHAX [PABHTALINH.
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