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Abstract-The solidification of a binary alloy is studied on a three-phase model (solid, liquid, mushy 
zone). The balance equations of the model are formulated globally over the whole region occupied by the 
alloy and are treated in a distributional sense. Convective phenomena in the melt and the influence of 
gravitational field are taken into account. The significance of the model for studying solidification processes 

under different gravity conditions is discussed. 

1. INTRODUCTION 

SOLIDIFICATION processes are driven by heat and mass 
transport. The transport itself can be due to the con- 
duction of heat and diffusion of solute and, in 
addition, convection and radiation may be involved. 
Hence, phenomenological models of processes of this 
type should contain the balance equations for mass, 
momentum and energy, the constitutive relations for 
generalized fluxes, and the equations of state. In this 
paper we shall restrict ourselves to the constitutive 
relations which follow from the axiomatic structure 
of non-equilibrium thermodynamics [l]. Using the 
hypothesis of local thermodynamic equilibrium we 
thus express certain equations of state from the equi- 
librium phase diagram of the binary alloy under con- 
sideration. 

We distinguish three phases in the system under- 
going solidification, namely a solid phase, a liquid 
phase and an inter-phase (sometimes called mushy 
zone or crystallization front), which is a mixture of 
solid and liquid. There are two main phenom- 
enological approaches to modelling such a system. 
First, there is a generalization of the classical Stefan 
problem. Here, the inter-phase is modelled as a dis- 
continuity surface [2] and the model consists of the 
balance equations in both solid and liquid, while the 
inter-phase balances take the character of jump con- 
ditions across the surface dividing the phases. This 
approach is analysed in ref. [3]. Another approach 
formulates the balances globally over the whole 
region occupied by the alloy. As a consequence, the 
balances must be treated in a distributional (weak) 
sense instead of pointwise in each of the phases as 
with the first approach. A useful example of a model 

of this type has been presented by Alexiades et al. [4]. 
Our mathematical formulation is, in fact, a gener- 
alization of ref. [4], taking the convective phenomena 
and the influence of gravitational field into account. 

2. A MODEL OF BINARY ALLOY 

SOLIDIFICATION 

2.1. Basic assumptions 

We consider a binary alloy consisting of com- 
ponents A and B and suppose that the alloy is capable 
of forming solid solutions in all proportions (e.g. Cu- 
Ni, Au-Pt). The system under consideration is situ- 
ated in an exterior gravitational field and the mass 
transfer is due to diffusion (in all the phases) and to 
convection (in the liquid phase and inter-phase). Heat 
is transferred by conduction and radiation (in the 
whole system) and by convection (in the liquid phase 
and inter-phase). We assume that the liquid phase and 
the inter-phase are quasi-incompressible Newtonian 
fluids and thus we can use the Boussinesq approxi- 
mation and the Navier-Stokes law for the stress tensor 
in these phases. Since we suppose that no convection 
takes place in the solid phase the Navier-Stokes law 
may be applied even there. Further we assume that 
there are no chemical reactions and that the interactive 
forces between the components of the alloy are neg- 
ligible. Finally, we model the alloy as an isotropic 
material. 

The theoretical study of alloys usually employs the 
model of a mixture [5,6]. The binary alloy in a solid 
phase (S), liquid phase (L) and an inter-phase (I) is 
then, as a whole, described by the respective continua 
Ek, k = S, L, I, each of which may be viewed as a 
superposition of one-component continua Et. 
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NOMENCLATURE 

c P specific heat under constant pressure Greek symbols 
c 
; 

specific heat under constant volume thermal expansion coefficient 
concentration ;“i Dufour coefhcient 

13 ditfusivity of component B of the alloy 7 solutal expansion coefficient 

9 specific Gibbs energy (chemical 6 Soret coefficient 
potential) s unit tensor 

i: acceleration of gravity 9, coefficient of dynamical viscosity 
h specific enthalpy i liquid fraction 

j diKusion Aux I’ density 
k thermal conductivity (8 radiation heat source. 

‘5. latent heat of crystallization 

LM latent heat of melting Superscripts 
A4 mobility I< phase of material, k = 1, L. S 

P pressure 1 inter-phase (mushy zone) 

9 heat flux L liquid 
T temperature S solid. 
T stress tensor 
U specific internal energy Subscripts 
V velocity A, B components of the alloy 
V specific volume 7. related to particular component, 

W diffusion velocity. 1 = A, 3. 

-.- 

x = A, B. Partial quantities Xi will be related to the 
particular components Et, ct = A, B, whereas the total 
quantities corresponding to the continuum E” wiii be 
denoted by X”. We thus introduce the densities jJr_ pi‘, 

where 

(1) 

and define the concentrations C$ as 

For the velocities v”,, vi we have 

cc:v; = VA, vs = 0. 
7 

Further we introduce the diffusion vefocities w”, by 

w”, E v^, - vh (4) 

and the diffusion fluxes j;. for which 

jk = Awt, xja = 0. (5) 

We denote by V& Vh the specific volumes. having 

VA F (p”)-‘. c/h z cc”,v;, cp”,v; = 1. (6) 
1 ^i 

Let 6 be the unit tensor and denote by Ta, T” the 
stress tensors and by p”;, p” the pressures. We then 
have 

where T” n El ,,Tk are the dissipative parts of the respec- 
tive stress tensors. The specific internal energies ~1, zk 
and the specific enthalpies h$, h”; are given by 

ui E2 cc:& I+ E c c$h:‘,. 
I 1 

h; zz M; +ph Vi, 11” z uh +ph V” (8) 

and in addition we put vi z /& -hi. The heat fluxes 
qt. q’ (curresponding to the conductive transport) and 
the radiation heat sources #g, #” satisfy 

qh E J-q:, (b” 5s p$:. (9) 
? ? 

For the specific Gibbs energies gk, g” we have 

and put ~~~ = ,y”H -gi. 
Supposing that the temperature field is the same 

for Ei. Ek and Eh, we denote the temperature by T“, 

the specific heats under constant pressure and con- 
stant volume by 4 and @LJi,, respectively, the thermal 
conductivities by k!, the diffusivities of the component 
B by D”, the Soret coefficients by Sk, the Dufour 
coefficients by fi”, the thermal and solutal expansion 
coefficients by 2’ and “J’, respectively, and the 
coefficients of dynamical viscosity by qt. FinaLly, we 
introduce the mobilities as 

Some of the quantities introduced are continuous 
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across the inter-phase ; the others are piecewise con- 
tinuous. So, for example, the jump of the enthalpy 
equals the latent heat of phase transformation. Denot- 
ing the latent heat of melting by LM we thus have 

L, = hL-hS, LM = -L, (11) 

where L, is the latent heat of crystallization. 

2.2. Balance equations 
We start by formulating the basic conservation laws 

for the continua in question, temporarily taking no 
care about the phase change process. Referring to the 
assumptions made in Section 2.1 we write the mass 
balance in the form 

div vk = 0, 

,,k =pk-~kkC(li(~k-~k)-~kyk(Ckg--Ckg) (12) 

k = L, S, I, where the bar denotes a reference value 
and the expansion coefficients are defined as 

The incompressibility of Ek does not imply the 
incompressibility of Ek, of course. Hence, the mass 
balance equations for the individual components E:, 
c[ = A, B, of the mixture are 

k 

p*%+divj*=O(k=L,S,I) (14) 

where 

dX; ax: 
dt - at + (v” - grad Xi) 

is the material derivative. 
Using the ‘weak diffusion approximation’ by which 

terms quadratic in wz and jz are supposed to be neg- 
ligible, we obtain the balance of momentum in the 
liquid phase as 

dvL 
pLdt = - gradpL+div ,,TL+pLg (15) 

where g is the gravity and pL is given by (12). If we 
suppose that the pressure gradient in (15) is due to 
the weight of the fluid, equation (15) can be split into 
the relations 

L 

gradpL = pLg, 

pL$ = div DTL-pLg[tlL(TL-P) 

+y”(C:-ck)]. (16) 

Applying the Navier-Stokes law, linearizing and tak- 
ing (12) into account we finally obtain 

a+ 
pL at = div (qb grad vL) 

-$g[aL(P-P)+yL(C~-C~)]. (17) 

This equation implies that the viscous forces are com- 
pensated by the buoyancy forces in the stationary 
state. 

Assuming formally that the coefficient of dynamic 
viscosity is a very large number in the solid phase. 
$ + co, we may also write (17) in the solid. Then, in 
accord with the assumption that the inter-phase is a 
fluid whose properties are determined by the cor- 
responding properties of the solid and liquid phases 
(cf. the next section), relation (17) also holds in the 
inter-phase. Consequently, we formally write 

pk g = div (q$ grad v”) 

-pkg[ak(Tk-Fk)+yk(Ckg-Ckg)] (17’) 

k = L, S, I. The balances of momentum for the indi- 
vidual components Et, CL = A, B are not included in 
our considerations. The reason is that these balances 
would be combinations of the balance of momentum 
for the mixture and a constitutive relation for the 
diffusion flux which we introduce later in this section. 

The balance of internal energy has the form (cf. 
refs. [5,7]) 

+~p~div$-~(,T~:gradv~)-~k =0 (18) 
a II 

k = L, I, in the liquid phase and inter-phase. Here, 
(A : B) denotes the scalar product of the tensors A and 
B. The last but one term on the left-hand side of (18) 
represents viscous dissipation of energy and is usually 
neglected in heat transfer equations. We thus put 

c (,Tz : grad vi) x 0 

in our model too. Since we assume vs = 0, VI x 0 we 
may also write the balance of internal energy for k = S 
formally in the form (18). 

Now, using (l)-(8) and (12), we can modify (18) to 
obtain 

pk d$ +div (qk + dji) + (v” * grad p”) 

-C(<*gradpkV$pk)-&k = 0 (k = L,I). 
Z 

(19) 
If the alloy is supposed to be diluted we have C”, << 1, 
say, and thus we may put pi Vi x 1, pi Vk z 0 and 
obtain 

(Y” - grad p”) - 1 (e - grad pi V&J”) 
(1 

= (pi)- ‘(j”, - gradpk) (20) 



k = I,, I. Taking the first equation of (16) into account 
and putting C”, z pa//?“, we finally arrive at the 
energy balance in the form 

p 
~ du” 

dt +div(q”+$jk)+(Ca) ‘(j”,*g) = 4” (21) 

i( = L. I. Owing to our assumptions on vs. vg, equation 
(19) may also be formally written for k = S and in 
this case the equivalence of (21) and (19) follows from 

the fact that j”, 2 0 under our assumptions. Hence, we 
use the energy balance (21) for k = L, S, I in what 

follows. 
The phenomenological laws of linear (irreversible) 

thermodynamics yield the constitutive relations 

j”, = -p’D’: grad C~+M”~+p”&” grad TA 

q” = -li” grad T” -l-/f grad C”,-- $$-g (22) 

k = L, S, I, where we suppose that Ds z 0, <l/l’ z 0. 
6s 5 0 to provide consistency with our previous 
assumption of ji = 0. Further, we suppose that 
~M’/D” z 0. 

Using (14), (17), (21) and (22). we thus finally have 

the following relations in each of the phases 
(k = L, s, I) : 

divv” = 0 

?V’ 

dC; 
p’ -dt- = div (p’ D" grad C”,) 

-div fM”g) -div (~~6’: grad T’) 

dui 
p’ -dt = div [(k” --qhp’dh) grad T”] 

+div [($p’D” -/jh) grad C”,] 

-(Ci;) -‘[(-r”hD’grddC; 

+M”g+/?“5” grad ?-“)*a]+$“. (23) 

In addition, the Gibbs relation must hold and equa- 
tions of state must be specified. 

2.3. The Gibbs relation and equation qf’siutr 

Developing the conservation laws and constitutive 
relations in the previous section we did not pay atten- 
tion to the phase change process. The particular 
phases in our model can only be distinguished by 
introducing the equation of state, which would be 
subject to the phase diagram and the Gibbs relation. 

Modelling the process at a macroscopic level \nc 
employ the assumption of local thermodynamic cqui- 
librium, which in &urn impiies the validity of the equi- 
librium phase diagram of the alloy locally. Consider 
an elementary cell P which is small enough to possess 
nearly uniform properties. The entire toll P thus 

belongs to one of the three continua, El-. E’ or E’. 
For simplicity. we assume that the liquid and solid 
curves in the cqui~ibrium phase diagram can be written 
as CT, = ,f”(T), k = L.S. where ,f” arc continuous 
functions. Further, WC assume that the possible phases 

for the cell P arc 

PE E’ c> f” (T) < Cl4 < ,I’( T) 

for definiteness. 

134) 

The continuum E’ has a special character since it is 
not a pure phase. It may be viewed not only as a 

superposition of Ef, and Ek but also as that of E’ and 
ES (i.e. as a mixture of liquid and solid). We apply 
the ‘lever rule’ and introduce the liquid fraction i by 

>. = I li)r PE F’ 

f’“(T)-c,, 
~~ for PEP 

= r’s(7J-f” (T) 

=O Lbr PEE’ (251 

in accordance with ref. [4]. Then, any specific quantity 
,%‘I defined in the inter-phase E’ (namely V’, p’, h’. vi. 

f~‘. 24’) can bc written as 

.Y’ = ;“X~-+(t-i)“P. !26) 

Equation (26) also holds in E’ and !?. 
In the liquid or solid the Gibbs relation reads 

do = Tds-xA,dil, (77) 

where Ai are generalized forces, n, generalized coor- 
dinates and s is the specific entropy. We will make use 
of the well-known thermodynamic relations 

Since we have i = I, 2 and 

.*I, =p. AZ = -_I(. u, = k, (12 = C-H 

it follows that 

In fact, up to now we tacitly assumed the con- 
centration CB and temperature T to be the primary 
independent thermodynamic variables describing the 
state of the continuum in question. However. the 
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internal energy was considered to be a function of the 
entropy, volume and concentration in (27). To avoid 
confusion we emphasize that the specific internal 
energy will be treated as a function of T, V and Cs in 
what follows and we thus write the equation of state 
in the form 

dC, (29) 

where we have (d~/aT)~,~, = c,. Combining (28) and 
(29), we obtain 

du = cvdT-[p-T(~)v,c] dV 

dV= (V,-V,)dC,+&dV,. 

Substituting into (32) we can write 

du=c,dT-pdV+T 

(33) 

where V, = V,(T,p, C,), a = A, B, satisfy the gener- 
alized Gibbs-Duhem equation 

The equation of state is established from the (T, C,) 
phase diagram, which implies the assumption of 
dp = 0 1ocally.t On this assumption, equations (33) 
and (34) yield 

We now eliminate the derivative (a~/aT),,,~, from 
(30). The chemical potentials 9% can be written as 

g,(p> T, C,) = .g,(p(p,, 0, T> C,) 

and thus 

where we have (agJ@)r,c, = V,. The definitions (l), 
(2) and (6) imply that pa, C, = const. (M arbitrary) if 
and only if V, C, = const. Hence, taking (10) into 
account we have 

Using the notation q = /X,-/Z, introduced in (8) and 
applying the second Gibbs-Helmholtz equation 

we combine (30) and (31) to get 

where 

Hence, the final form of the Gibbs relation for the 
liquid or the solid is 

du” = c$dT-pkdVk+qkdCe (k= L,S). (35) 

In the inter-phase, applying (26) to the energy u 
and differentiating we have 

du’ = AduL+(l-J)duS+(uL-u’)dE.. (36) 

Now we substitute into (36) from (35), express the 
specific properties c,,, V and q in accord with (26) and 
take equations (8), (11) and the assumption dp = 0 
into account. We thus arrive at 

du’ = c~dT-p’dV’+y’dC,+L,d;i (37) 

where LM = (z&-us)+p(VL- V”) = hL-h’. 

Since da = 0 in the liquid or solid (cf. equation 
(25)), the Gibbs relation 

du” = c; dT-p” dV’ +qk dC, +L, dP (38) 

du = ,,dT-[p-T(~)v,c]dv 

dC,. (32) 
du+ = c;+L,$-pi”V dT 

Further, equations (6) and (2) imply 

is valid in each of the phases, k = L, S, I. Recalling 
that the process is isobaric locally we note that 
V = V(T, C,), ;i = 1(T, C,) so that (38) can be given 
in the form 

$+L,g-p*y”V” 
R 

where c,” = $(T,C,), qk = $(T,C,), LM = L,(T), 
ctk = ctk(T) and yk = y”(C,). The equation of state in 
the form u = u(T, C,) can now be obtained by the 
same integration procedure as in ref. [4]. 



1.4. ‘SC model ef’s~~id~~~~ti~n If we simplify further and consider the case of 
Combining (23) and (39), we obtain the following p = const. (i.e. x = 7 = 0) and Y = 0. then the 

equations that the unknown quantities p. v, T and C, diffusion equation will be the same as in (41), whereas 
should satisfy : Ihc heat equation becomes 

p = @[I ----a(T-i;)-i’(C,,-~iH)] 

div v = 0 
q 

p :: = div (ylv grad v)-pg[ct(T- T) +~(CB- cr’,)] 

p 2$ = div (pD grad C,) -div (&Q) 

- div (pS grad 7’) 

j(<.p+L, ;j “d: = div (k grad T-/i grad Ce) 

- 
+ L, iGt, [div (p6 grad T) - div ( pD grad C’!,)] 

-[gradq-i-(C,) ‘a] *(pS grad T-pD grad Clr). 

(42) 

l?i dT 
p c,+LM c?~ -pxV 27 = div [(k--qpJ)grad T 

x fdiv (~6 grad T) + div (iwg) - div ( yD grad Cf,)] 

~~~~~)~grad T)*g+qh. (40) 

This system of equations is understood to hold in a 
distributional sense in the entire domain occupied by 
the aiioy. We suppose that the material properties X, 
jr, vi, iIJ. k, is, 8, RI. L., and the heat sources or 
sinks are determined experimentally. Furthermore, an 
equilibrium phase diagram is supposed to be known, 
giving the possibility to determine i = A(T, C,). The 
initial and boundary conditions for equations (40) 
follow from the experimental situation. 

3. DlSCUSSION 

The model of solidification based on the system 
of equations (40) is still rather complicated. In fact. 
second-order effects are taken into account in this 
model. For example, the influence of the forced 
diffusion due to gravitational forces (represented by 
the parameter M in our model) can be neglected in 
many cases [S]. Putting A4 z 0 and grad M x 0 in (40) 
and neglecting the radiation term 4, the diffusion and 
heat equations become 

p 2;” = div (pD grad C,) - div (p6 grad 7’) 

dT 
dt=div[(k-llp6)grad7 

+(~~~-~)g~dC~]+ q+L, ;;- -pii V 
H ! 

x [div (~6 grad T) - div ( pD grad C,)] 

-(C,)-‘(-pt)grad C,+$grad T)‘R, (41) 

In this cast, the only difference between our simplified 
model and the model of Alexiades c’t (11. [Y. IO] is the 
gravity term in the energy equation (42). 

We feel. however. that this term itself canno 
explain the influence of gravity on solidification 
phenomena. Roughly speaking, this influence would 
be significant if we had i(C,) ‘~1 Z jgradqj in the 
simplified model. We think that this is not the case m 
most experimental situations. For example, the data 
given in ret’s. [9, IO] regarding the solidification of 
CuNi and HgTe-CdTe alloys indicate that jgrad rjrl is 
two to four orders ofmagn~tude greater than [(c’,) ‘~1 
in terrestrial conditions. 

Therefore, it is reasonable to assume that the infu- 
ence of the gravitational field on solidification pro- 
cesses will be manifested through the influence ofg 
on the fluid flow and thus a model taking convection 
in the melt into account is necessary to study sol- 
idification under different gravity conditions. This 
paper presents an attempt at constructing a relatively 
simple model of this type. 
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UN MODELE DE LA SOLIDIFICATION DUN ALLIAGE BINAIRE AVEC 
CONVECTION DANS LE BAIN 

R&sum&La solidification dun alliage binaire est Btudib sur un modtle a trois phases (solide, liquide, 
boue). Les equations de bilan du mod&e sent formulees globalement sur tome la region occupee par 
l’alliage et sont trait&es dans un sens dist~butionnel. On prend en compte les phenomenes convectifs, dans 
le bain et l’inthtence du champ de gravid. On disc&e la situation du modele pour etudier les mecanismes 

de la solidification sous differentes conditions gravitaires. 

EIN MODEL FUR DIE ERSTARRUNG EINER ZWEISTOFFLEGIERUNG MIT 
KONVEKTION IN DER SCHMELZE 

Zusammenfassung-Die Erstarrung einer Zweistofflegierung wird mit Hilfe eines Dreiphasenmodelis (Fest- 
stoff, Fhissigkeit, Verfestigungszone) untersucht. Die Bilanzgleichungen des Modells sind fur das gesamte 
von der Schmelze eingenommene Gebiet global formuliert und werden als verteilt angesehen. Konvektion 
in der Schmelze sowie Einfliisse des Schwerefeldes werden beriicksichtigt. Die Bedeutung des Modells 
fiir die Untersuchung von Verfestigungsvorgangen bei unterschiedlichen Gravitationsbedingungen wird 

diskutiert. 

MOJ@JIb 3ATBEPflEBAHkIII PHHAPHOI-0 PACIIJIABA I-IF&I HAJIH~HH KOHBEKLJMH 

-Ha TepeXi@nofi MonenH (Tnepnoe reno, r;lmrXorxb, nopncran sona) Hccnenyerca sarnep- 
neaamre 6smapnoro pacmrana. &te’rcs r~ro6a~mnaa @ophiynnponXa ~o~eXmrr,rX ypanrrerrntj 6aXasma 
.uas n&l o6Xacrn, 3amrro~ pacrrnanoiw, n npo~omrrcX afranns pacnpejrenerinn pacrmana. Y~~rbrriaro~cX 
KOH%eKTRBHMe XnxemiX B pacrmane H lUfmimre ~B~~OnHOrO nOaX. oFicyxp;saeTca pOJ& hfOrn%m B 

rnyXemrii IrporleccoB 3a-rsepneaarinX npn palrrwwa ycno~nnx rpanrfranmr. 


